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Purpose. The methodology of predicting the pharmacokinetic parame-
ters (AUC, Cpuxs tmax) and the assessment of their variability in bioequi-
valence studies has been developed with the use of artificial neurat
networks.

Methods. The data sets included results of 3 distinct bioequivalence
studies of oral verapamil products, involving a total of 98 subjects
and 312 drug applications. The modeling process involved building
feedforward/backpropagation neural networks. Models for pharmaco-
kinetic parameter prediction were also used for the assessment of their
variability and for detecting the most influential variables for selected
pharmacokinetic parameters. Variables of input neurons based on logis-
tic parameters of the bioequivalence study, clinical-biochemical param-
eters, and the physical examination of individuals.

Results. The average absolute prediction ervors of the neural networks
for AUC, ¢y, and t,,,, prediction were: 30.54%, 39.56% and 30.74%,
respectively. A sensitivity analysis demonstrated that for verapamil the
three most influential variables assigned to input neurons were: total
protein concentration, aspartate aminotransferase (AST) levels, and
heart-rate for AUC, AST levels, total proteins and alanine aminotrans-
ferase (ALT) levels, for ¢, and the presence of food, blood pressure,
and body-frame for tp -

Conclusions. The developed methodology could supply inclusion or
exclusion criteria for subjects to be included in bioequivalence studies.

KEY WORDS: bioequivalence; neural networks; prediction; pharma-
cokinetics; verapamil.

INTRODUCTION

Bioequivalence studies are finance and time-consuming
for the investigator, which is why their eventual negative results
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ABBREVIATIONS: AUC, area under concentration-time curve; Cy,,y,
peak plasma concentration; t,,,,. time to reach peak plasma concentra-
tion; AST, aspartate aminotransferase; ALT, alanine aminotransferase;
ME, mean error; MSE, mean squared error; RMSE, root mean squared
error; |Le%], absolute learning error percent; |Pe%], absolute prediction
error percent; t,, time of dose application after which pharmacokinetic
parameters were determined; CV,,,, coefficient of variation for measured
values; CV,, coefficient of variation for predicted values; AbsAveSens,
absolute average sensitivity; i, i-th input; n, number of training rows;
FF, evaluation of the network; I, current value of input in training row
(in internal units); A, 0.1; CV, coefficient of variation; u, parameter of
input influence.
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are undesirable for both investigator and volunteer or patient.
The variability of pharmacokinetic parameters (AUC, Cgux,
tmax)» Which are usually calculated to determine the rate and
extent of drug absorption, has a great influence on the study
results (1). The values of pharmacokinetic parameters were
predicted by using artificial neural networks (2—-6), and the
variability of pharmacokinetic parameters were caiculated from
their values. We attempted to find a new way to reduce the
variability of pharmacokinetic parameters with a proper selec-
tion of individuals. We were seeking variability sources between
clinical-biochemical parameters and the physical examination
of individuals, formulation properties, and the study design.
The most influential variables were determined by performing a
sensitivity analysis of the neural models. The known variability
sources and predicted values of pharmacokinetic parameters
could help to determine individuals with a higher intra- and
interindividual variability contribution in order to review their
inclusion in the study. Verapamil was used as a model drug
where it was also interesting as a member of the highly variable
drugs group.

MATERIALS AND METHODS

Database

The database included results of 3 distinct bioequivalence
studies of two oral verapamil products. A 2 X 2 cross-over
design was used in all the studies, but they differed in the
number of individuals involved, the number of applications
(single-multiple dose), and the presence of food relative to drug
administration. In total, 98 subjects and 312 drug administra-
tions were involved in the data sets. Both products were the
same in all the studies, whose sponsor was the pharmaceutical
company Lek d.d, Ljubljana.

In a multiple dose study we used AUC, which was calcu-
lated after the last dose application. The concentration at time
zero (ty) equaled O in single dose studies, whereas it was differ-
ent from 0 in a multiple dose study. Some of the variables used
for building models were nominal and we transtormed them
to numeric values. Our data were varnable and neural networks
predicted values that rarely occur in a training matrix with a
higher prediction error. For these reasons, we divided the data-
base into 10 similar operational data sets (7). They were similar
in the pharmacokinetic parameter value and the observations
of one individual were united in a particular data set. One of
the data sets was used as a test set for the validation of network
prediction and the other 9 as a training set. In this way, 10%
of the whole database was used for testing the utility of the
model (8). Each data set was once a test set and for this reason,
10 neural networks were constructed for each pharmacokinetic
parameter. Before the division of the database, we excluded 5
randomly assigned individuals, and after the division these 5
individuals were added to each test set. These individuals were
used for comparison of the prediction between all 10 neural
networks for the same pharmacokinetic parameter. Furthermore,
a randomly assigned test set of 14 individuals was excluded
from the database before training and was called a random test
set. It was also used for the validation of the neural net-
works prediction.
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Building Neural Networks

Feedforward/backpropagation neural networks with a sig-
moid transfer function and one hidden layer were created with
NNMODEL (Version 1.402, Neural Fusion) neural network
software. We used supervised learning with the delta learning
rule and its moment version (9-12). The hidden and output
neurons received an additional constant input that is called the
bias (13). The input neurons were introduced with values of
19 variables: the name of the individual, height, age, body
weight, heart rate, constitution, blood pressure, serum creati-
nine, serum bilirubine, serum calcium, serum concentration of
alkaline-phosphatase, serum AST levels, serum ALT levels,
serum total proteins, concentration in time zero, presence of
food, sequence, period, and formulation. Networks for AUC,
Cmax» and ty,, prediction included 9, 10, and 10 hidden neurons,
respectively. The output neuron was one of the pharmacokinetic
parameters (AUC, €. OF tray)-

Training Neural Networks

During the training of neural networks, the training status
graph was updated after each iteration. The status graph dis-
played the sum squared error of the training and test matrix.
An overtraining phenomenon occurs after 200 iterations, and
for this reason we stopped training at this point (16).

Validation of Neural Networks

For all neural networks predicted output values were calcu-
lated by NNCALC Excel-add in (Neural Fusion). From the
predicted vs. the obtained differences of pharmacokinetic
parameter values, mean error (ME), mean squared error (MSE),
root mean squared error (RMSE), absolute learning ervor per-
cent (|L.e%]), and absolute prediction error percent |Pe%)| were
calculated for learning and prediction validation (3,14):

N
ME = % EPe;; Pe = observed — predicted;

i=1

N = number of observations n
N

MSE = % > Pe; RMSE = /MSE )
i=1

IPec] = 100—IPeL 3)

prediction

The absolute learning error percent was calculated in the same
way as absolute prediction error percent, only the training set
was used for calculations instead of the test set. Measured and
predicted graphs were also constructed for all observations (i.e.,
drug administrations in individuals), and for the validation of
prediction, the coefticient of variation for both measured and
predicted values of pharmacokinetic parameters was calculated.
When logarithmic values of pharmacokinetic parameters were
normally distributed (log AUC, log cu.x), the t-test and F-
test were performed at alpha level 0.05 for the comparison of
measured and predicted average and variances of output values
of the test sets. In the case of a non-normally distributed parame-
ter tmao non-parametric  Kruskal-Wallis ANOVA  was
performed.
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Sensitivity Analysis

A sensitivity analysis was performed with the NNMODEL.
It showed the sensitivity of the output variables to changes in
the input variables. The sensitivity is calculated by summing
the changes in the output variables caused by moving the input
variables by a small amount over the entire training set. We
used absolute average sensitivity (AbsAveSens) for sensitivity
analysis (15):

AbsAveSens; = > |FR(L; + A) — FR(l; — A)]  (4)
i=t

The most influential variables for pharmacokinetic parameters
were determined by performing a sensitivity analysis for all
neural networks. To determine the average sensitivity of one
pharmacokinetic parameter, we added AbsAveSens; of all 10
neural networks for each input variable. The total was then
divided by 10. Input variable sensitivity and varnability are
important for the variability of pharmacokinetic parameters.
Therefore we multiplied AbsAveSens; and the coefficient of
variation of a particular input variable. A new multiplied param-
eter was named u:

u; = AbsAveSens; *CV, )

On the basis of the average sensitivity and the parameter u,
input variables were sorted in order of influence on the pharma-
cokinetic parameter value.

Linear Regression Models

A correlation analysis was performed for all data sets. For
input vaniables with a statistical significant Pearson correlation
coefficient, linear regression models were constructed. The dif-
ference in coefficient of variation for measured and predicted
values was calculated and compared with neural models.

RESULTS

All results are presented for normalized variables. Table
I shows the validation of networks learning for each pharmaco-
kinetic parameter. The average ME of all networks is negative,
which means employed neural networks generally predicted

Table I. Validation of Networks Learning Performance

ME'  MSE’ RMSE* |Le%|

AUC
Average of 10 neural networks —0.00270 0.00284 0.05326 20.74
Random learning set 0.00629 0.00323 0.05683 25.14
CIIIL\X
Average of 10 neural networks —0.00981 0.00889 0.09422 35.22
Random learning set —0.00566 0.00686 0.08281 33.59
ll]lHX
Average of 10 neural networks —0.01251 0.00197 0.04436 27.58
Random learning set --0.00950 0.00190 0.04400 27.94

“ ME: mean error.

® MSE: mean squared error.

¢ RMSE: root mean squared error.

¢ |Le%|: absolute learning error percent.
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higher output values compared with the measured values. Learn-
ing performance was the best in neural networks for AUC
prediction. Some values of |Le%| were higher and reached
148.09% for AUC, 162.74% for ¢y, and 169.45% for tg,,
neural networks. The validation of networks prediction is shown
in Table Il. Few individual cases occur with each parameter
where the network yields much higher |Pe%]|. The maximum
|Pe%| was 232.85% for AUC, 253.23% for Cpyx, and 290.23%
for ty,. These cases appear to be linked with the outlying
pharmacokinetic response in a particuiar individual. For each
test set, the F-test for comparison of the variances of measured
and predicted values was performed. For AUC, 7 of the 10 test
sets had insignificant differences in the variance of measured
and predicted output values, and the difference in average coef-
ficient of variation for measured and predicted values was
7.55%. In 8 of the 10 test sets the difference between the
average of measured and predicted values was insignificant.
For ¢ all 10 test sets showed significant differences in the
variance of measured and predicted output values and the differ-
ence in average coefficient of variation for measured and pre- -
dicted values was 36.71%. Neural networks for ¢,,,,, were unable
to perceive a variability of the measured values. In 6 of the 10
test sets the difference between the average of measured and
predicted values was significant. There were insignificant dif-
ferences between the average of measured and predicted values
of tmax in 8 of the 10 test sets. The difference in the average
coefficient of variation for measured and predicted values was
20.06%, which indicates these networks had a low ability to
perceive the variance of t,,,,. In Fig. 1, measured and predicted
values of AUC are presented for one typical test set.

Five individuals, who were randomly excluded from the
database before its division into 10 operational data sets, were
added to each test set. The average absolute prediction error
percent when a prediction was performed on these individuals
was: 25.63% for AUC (average for ali 10 test sets with a
minimum 15.33% and a maximum 47.11%), 40.23% for Cp,x
(average for all 10 test sets with a minimum 35.44% and a
maximum 42.49%), and 32.25% for t,,, (average for all 10
test sets with a minimum 30.32% and a maximum 36.20%).
The differences between a test set with the maximum prediction
error and a test set with the minimum prediction error reveals,
that despite the relatively large size of the entire database
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(n = 98 subjects and 312 administrations), prediction perfor-
mance still depends on the individuals who are included in the
training matrix.

A sensitivity analysis was performed on the basis of neural
models for the prediction of pharmacokinetic parameters. It
demonstrated that, for verapamil, the four most influential vari-
ables assigned to input neurons were: total protein concentra-
tion, concentration at ty; AST levels and heart-rate for AUC;
AST levels, total protein concentration, concentration at t;, and
ALT levels for cp,,,, and the presence of food, blood pressure,
constitution and AST levels for t,,,.. Less influential variables
were: formulation, period, and the presence of food for AUC;
sequence, period and formulation for ¢,,,, and serum concentra-
tion of alkaline-phosphatase, sequence and concentration at t,
for tp,y.

Input variables were also sorted with regard to the parame-
ter u. The most influential input variables have higher values
of the parameter u. These are: concentration at t;, presence of
food, AST levels, name of the individual, ALT levels and serum
bilirubine for AUC; concentration at t,, AST levels, presence
of food, name of the individual, ALT levels and serum concen-
tration of alkaline-phosphatase for ¢, and presence of food,
name of the individual, AST levels, constitution, concentration
at t, and ALT levels for t,,.

Four linear regression models were built for AUC and
Cmax» and two for tg,,,. Values of AUC and c,,, were predicted
from concentration at t,, serum total proteins, AST levels, and
serum calcium. The differences in average coefticient of varia-
tion for measured and predicted values were: 28.52% (serum
total proteins), 22.16% (concentration at ty), 29.57% (AST lev-
els), 30.68% (serum calcium) for AUC models and 45.31%
(serum total proteins), 43.41% (concentration at t,), 44.99%
(AST levels), and 49.38% (serum caicium) for c,, models.
Values of t,, were predicted from concentration at t, and
presence of food. The differences in the average coefficient of
variation for measured and predicted values of t,,, were:
22.52% (presence of food) and 35.36% (concentration at t,).

DISCUSSION

The statistical analysis of the bioequivalence study results
includes the determination of pharmacokinetic parameters. The
variability sources of these parameters are usually analyzed

Table II. Validation of Networks Prediction Performance

ME MSE RMSE {Pe %1 CV,! % CV %

AUC

Average of 10 neural networks —0.00365 0.00553 0.07343 30.54 39.53 31.98

Random learning set 0.02716 0.00964 0.09816 39.57 49.42 30.35
Cmax

Average of 10 neural networks -0.01120 0.01060 0.10190 39.56 54.14 17.43

Random learning set 0.03877 0.02287 0.15123 53.54 63.81 20.66
tmax

Average of 10 neural networks ~0.00885 0.0024 0.0486 30.74 43.78 23.72

Random learning set —0.0102 0.0018 0.0430 28.44 39.06 25.35

4 |Pe%|: absolute prediction error percent.

b CV,,: coefficient of variation for measured values.

¢ CV,: coefficient of variation for predicted values.
P
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Fig. 1. Measured and predicted values of AUC. The test set |Pe %| is 28.19%.

with the aid of ANOVA and linear models. The concept of the
analysis of variance is to study the variability in the observed
data by partitioning the total sum of squares of the observations
into components of fixed effects and random errors. For the
standard 2 X 2 crossover design, we would partition the total
sum of squares into components for the carry-over effects, the
period effect, the direct drug effect, and the error (1).

We tried to define variability sources more precisely and
better explain intraindividual and interindividual variability for
verapamil. Besides variables of the study design (sequence,
period, formulation, food), we used another 15 variables. We
thought they could contribute to the total variability. Biochemi-
cal parameters that were used as input variables were measured
once before the clinical part of the study. This may contribute to
the increase of prediction error of pharmacokinetic parameters
because we were unable to note changes in the biochemical
parameters that could occur between applications of two formu-
lations. If neural networks would be learned with repeated dose
data, then models could perceive intraindividual changes in the
PK parameters. In a standard 2 X 2 crossover design models
can perceive only interindividual changes in the PK parameters.
Therefore by measuring biochemical parameters during the
study, intraindividual changes in defined input variables couid
be detected and models could predict intraindividual PK param-
eter changes.

Neural networks were used as a tool because no presump-
tions are needed for the evaluation of results and because of very
noisy data. The average prediction error of pharmacokinetic
parameters is from 30.54% for AUC to 39.56% for c,,. The
error seems to be high, but verapamil is a highly variable drug
with an intraindividual coefficient of variation of about 23%
for AUC and 29% for ¢, (17). A prediction of the same
pharmacokinetic parameter on five individuals was different
among 10 neural networks. We concluded that the results still
depend on the individuals who are included in the training sets
and that an increase in the training matrix data could improve
that prediction. Neural networks also gave the best results with
test data that were in the range of training matrix data. All
outliers (namely individuals whose observed pharmacokinetic
parameters were outside the learning range) had a higher predic-
tion error than other individuals.

A sensitivity analysis was performed on the basis of neural
models. With the sensitivity analysis all 19 input variables were
sorted according to influence on output variable changes. The
sensitivity analysis results show drug concentration at time t;
(or before application of the dose after which pharmacokinetic
parameters were determined) is important for AUC and c .
This is a consequence of database properties, which included
data from single and multiple bioequivalence study designs and
confirms the accuracy of the sensitivity analysis results. The
bioavailability of verapamil is 20-35% and protein binding
about 90%. 1t is known the protein binding of drugs is related
to AUC and c,,, and the sensitivity analysis results show a
high influence of verapamil plasma protein concentration on
AUC and c,,. The serum concentration of liver enzymes was
determined as influential for AUC and c¢,,,,. This couid be
connected with low bioavailability and the extensive first-pass
effect of verapamil. The presence of food was determined as
the most influential parameter for (,,,, variability. This could be
explained by the influence of food on the rate of drug absorption.

An impact of input variable on output variable values
depends on its sensitivity and variability in the population of
individuals. Therefore a new parameter (u) was calculated.
Higher values of the parameter u signify a more influential
input variable except in cases of nominal input variables, whose
defined numeric values were often extreme and the variability
of those variables cannot be numerically interpreted. The influ-
ence of nominal variables cannot be precisely determined in
this way. The results of this ranging show that serum concentra-
tion of liver enzymes and concentration at time t; belong to the
most influential variables as in the sensitivity analysis results.

All linear regression models were worse perceiving phar-
macokinetic parameter variability compared to the neural
models.

This study demonstrated backpropagation neural networks
are a useful tool for the prediction of verapamil pharmacokinetic
parameters. Neural models could also be used for the determina-
tion of variability sources. Developed neural models are useful
only for the prediction of verapamil parameters. More investiga-
tions with a developed methodology should be made. Neural
networks should be learned with the database of other sub-
stances, i.¢., other calcium antagonists, and the results of input
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factor influence should be compared. Because of the very vari-
able data, widening the database could give better results or
a lower prediction error of neural networks. The developed
methodology offers an opportunity for selecting individuals
for bioequivalence studies whose properties would provide a
smaller variability of pharmacokinetic parameters and an
increased power of the study. The most influential input factors
should be scrutinized in the protocol before or during the study.
In this way a higher accuracy of bioequivalence study outcome
could be obtained (a high intraindividual vaniability of pharma-
cokinetic parameters could produce the wrong outcome of the
bioequivalence study) while offering the possibility of using
fewer subjects.
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